考研数学概率论历年真题重难点

时间:2025-01-02 13:57:20 | 作文来源:小练笔

考研数学概率论历年真题重难点

  考研数学是考研复习的一大难点,针对概率论与数理统计,考研教育网小编结合历年考研数学真题整理、总结了以下重、难点,希望对大家的复习有所帮助。

  概率论与数理统计初步主要考查考生对研究随机现象规律性的基本概念、基本理论和基本方法的理解,以及运用概率统计方法分析和解决实际问题的能力。

  一、随机事件与概率

  重点难点:

  重点:概率的定义与性质,条件概率与概率的乘法公式,事件之间的关系与运算,全概率公式与贝叶斯公式

  难点:随机事件的概率,乘法公式、全概率公式、Bayes公式以及对贝努利概型的事件的概率的计算

  常考题型:

  (1)事件关系与概率的性质

  (2)古典概型与几何概型

  (3)乘法公式和条件概率公式

  (4)全概率公式和Bayes公式

  (5)事件的独立性

  (6)贝努利概型

  二、随机变量及其分布

  重点难点

  重点:离散型随机变量概率分布及其性质,连续型随机变量概率密度及其性质,随机变量分布函数及其性质,常见分布,随机变量函数的分布

  难点:不同类型的随机变量用适当的概率方式的描述,随机变量函数的分布

  常考题型

  (1)分布函数的概念及其性质

  (2)求随机变量的'分布律、分布函数

  (3)利用常见分布计算概率

  (4)常见分布的逆问题

  (5)随机变量函数的分布

  三、多维随机变量及其分布

  重点难点

  重点:二维随机变量联合分布及其性质,二维随机变量联合分布函数及其性质,二维随机变量的边缘分布和条件分布,随机变量的独立性,个随机变量的简单函数的分布

  难点:多维随机变量的描述方法、两个随机变量函数的分布的求解

  常考题型

  (1)二维离散型随机变量的联合分布、边缘分布和条件分布

  (2)二维离散型随机变量的联合分布、边缘分布和条件分布

  (3)二维随机变量函数的分布

  (4)二维随机变量取值的概率计算

  (5)随机变量的独立性

  四、随机变量的数字特征

  重点难点

  重点:随机变量的数学期望、方差的概念与性质,随机变量矩、协方差和相关系数

  难点:各种数字特征的概念及算法

  常考题型

  (1)数学期望与方差的计算

  (2)一维随机变量函数的期望与方差

  (3)二维随机变量函数的期望与方差

  (4)协方差与相关系数的计算

  (5)随机变量的独立性与不相关性

  五、大数定律和中心极限定理

  重点难点

  重点:中心极限定理

  难点:切比雪夫不等式、依概率收敛的概念。

  常考题型

  (1)大数定理

  (2)中心极限定理

  (3)切比雪夫(Chebyshev)不等式

  六、数理统计的基本概念

  重点难点

  重点:样本函数与统计量,样本分布函数和样本矩

  难点:抽样分布

  常考题型

  (1)正态总体的抽样分布

  (2)求统计量的数字特征

  (3)求统计量的分布或取值的概率

  七、参数估计

  重点难点

  重点:矩估计法、最大似然估计法、置信区间及单侧置信区间

  难点:估计量的评价标准

  常考题型

  (1)求参数的矩估计和最大似然估计

  (2)估计量的评价标准(数学一)

  (3)正态总体参数的区间估计(数学一)