考研数学解析做题注意三大关键

时间:2024-10-09 16:36:59 | 作文来源:小练笔

考研数学解析做题注意三大关键

  在日常学习和工作中,我们都可能会接触到试题,试题是考核某种技能水平的标准。什么样的试题才是科学规范的试题呢?以下是小编为大家收集的考研数学解析做题注意三大关键,仅供参考,希望能够帮助到大家。

  三大关键:

  很多考生迷恋题海战略,不论什么题型都要多做,其实完全没有必要,只要掌握了题型特点,牢记所考知识点,懂得举一反三,完全可以避免疲劳轰炸。而且很多考生对考研数学可以说是敬而远之,虽然很用心复习但是真到考试的时候,还是会焦头烂额,最后成绩也不高。这就是没有掌握好考研数学试卷的特点,没有掌握做题技巧的弊端。下面,为20xx考生们提出几点考研数学的答题技巧,希望对考生们有所帮助。

  第一、选择题。

  历年来的试卷中,选择题总共8个小题,每小题4分,合计32分值。很多考生在拿到试卷的时候都是按照顺序一一作答,单项选择也成为了第一个考生需要拿下的题型,而且作为考生第一接触的题目,很有可能影响后面做题的心情。所以,选择题虽然分值不是很高,但是却很重要。

  单项选择题所考查的重点主要是基本概念、基本性质、基本定理等知识,相对容易,考生只需掌握基础概念和性质,即可拿到分数。

  但是题目中很有可能会出现一道具有一定难度的题目,这时候考生不要乱了阵脚,如果没有解题思路可以先试着做下一道题,或者选择第一印象觉得正确的答案。在答题时,注意时间的掌握,不要浪费过多的时间在选择题上,后面还有很多的题需要去做。

  选择题做题技巧:一般来说答案中ABCD选项的分布是比较均匀的,很少会出现某个字母正确频率过高。所以,在做选择题时,可以看一下ABCD的选择情况,根据平均分布的原则,把最不能确认的题目选出来。

  第二、填空题。

  在考研数学中,填空题包含6个小题,每小题4分,一共24分。填空题一般所考查的知识点也是基础知识,但主要是考察考生的运算能力。填空题的特性就是注重结果,不注重过程,只要答案正确,就可以得分,考生要掌握利用最简单的计算方法、花费最少的时间做填空题。在平时复习时,就要经常运用计算公式,以及运算技巧,这样在考试中才能得心应手。

  填空题做题技巧:由于填空题只重结果的特性,最常用的技巧就是"代入法",考生可以把一些特殊的数字代入到题目当中去运算,得出结果。

  第三、解答题。

  可以说解答题决定了考研数学的成败,9道解答题占到94分处决定性地位。解答题的题型包括计算题、证明题和应用题等。主要考查的是考生综合运用知识的能力。可以说这类题是具有难度的。考生需要在复习阶段多加练习,才有可能取得好的成绩。

  解答题做题技巧:类似计算题和证明题等题目,一般都有很多解题方法和证明思路,但是在考研数学考试中,答题的方法尽量与《考试大纲》规定的内容相一致,步骤要表述清楚,避免杂乱无章而丢分。在做解答题的时候,一定要把每个步骤写清楚,这样可以按步骤得分,不要跳跃式答题。即便这道题考生答不出来,也要尽量写个过程下来,切记不可留大段空白。

  总之,想要取得考研数学高分,就要在复习的时候踏踏实实,一步一步复习,灵活掌握答题技巧。但是技巧只能是辅助性的,不足以取代复习的功效。所以,只有打牢基础知识的复习,加强复习效果,在掌握相关答题技巧起到锦上添花的作用。

  建议:

  暑假阶段是考研学子的黄金期,大家基本已经对高数的总体有了了解,也许对很多考点还只是大致的复习,没有深入,这个不要紧,因为还有半年的时间。在这一阶段的主要目标是针对高数中的重点考点做强化复习,对一般难度和常见题型要做到熟练掌握。

  一、函数、极限与连续

  求分段函数的复合函数;求极限或已知极限确定原式中的常数;讨论函数的连续性,判断间断点的类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。这一部分更多的会以选择题,填空题,或者作为构成大题的一个部件来考核,复习的关键是要对这些概念有本质的理解,在此基础上找习题强化。

  二、一元函数微分学

  求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;利用洛比达法则求不定式极限;讨论函数极值,方程的根,证明函数不等式;利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,此类问题证明经常需要构造辅助函数;几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;利用导数研究函数性态和描绘函数图形,求曲线渐近线。

  三、一元函数积分学

  计算题:计算不定积分、定积分及广义积分;关于变上限积分的题:如求导、求极限等;有关积分中值定理和积分性质的证明题;定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;综合性试题。

  这一部分主要以计算应用题出现,只需多加练习即可。

  四、向量代数和空间解析几何

  计算题:求向量的数量积,向量积及混合积;求直线方程,平面方程;判定平面与直线间平行、垂直的关系,求夹角;建立旋转面的方程;与多元函数微分学在几何上的应用或与线性代数相关联的题目。这一部分的难度在考研数学中应该是相对简单的,找辅导书上的习题练习,需要做到快速正确的求解。

  五、多元函数的微分学

  判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数;求二元、三元函数的方向导数和梯度;求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习;多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。这部分应用题多要用到其他领域的知识,在复习时要引起注意,可以找一些题目做做,找找这类题目的感觉。

  六、多元函数的积分学

  二重、三重积分在各种坐标下的计算,累次积分交换次序;第一型曲线积分、曲面积分计算;第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用;第二型(对坐标)曲面积分的计算,高斯公式及其应用;梯度、散度、旋度的综合计算;重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。

  七、微分方程

  求典型类型的一阶微分方程的通解或特解:这类问题首先是判别方程类型,求线性常系数齐次和非齐次方程的特解或通解;根据实际问题或给定的条件建立微分方程并求解;综合题,常见的是以下内容的综合:变上限定积分,变积分域的重积分,线积分与路径无关,全微分的充要条件,偏导数等。

  总之,数学要想考高分,考生必须认真系统地按照考试大纲的要求全面复习,掌握数学的基本概念、基本方法和基本定理。注意抓题型的解决方法和技巧,不断总结。而这一切的获得,都是建立在大量的做习题的基础上的,但是做习题不仅仅是追求量,还要保证质,所谓“质”,就是彻底理解所做过的每一道题,而这一点通常显的更为重要!